A unified computer model for internal and external constraints in language evolution

5th International Conference on the Evolution of Language Leipzig, 1-4-2004

Christophe Coupé Laboratoire Dynamique du Langage, CNRS - Université Lyon 2, France

Overview

Main questions:

What is language change?

How do internal and social constraints interact in language change?

How can we investigate the rate of language change or the linguistic diversity in a community of speakers?

What the model does, and what it doesn't

- The model investigates the evolution of language with general mechanisms (back to basics)...
- It pays equal attention to internal and social factors, and allows various degrees of complexity for both ...
- But is not a model of emergence (although the framework may capture several existing models of emergence)

Outline

Underlying theoretical framework

Description of the model

First experiments

Perspectives and work in progress

Outline

Underlying theoretical framework

Language as a complex dynamical system

The underlying paradigm:

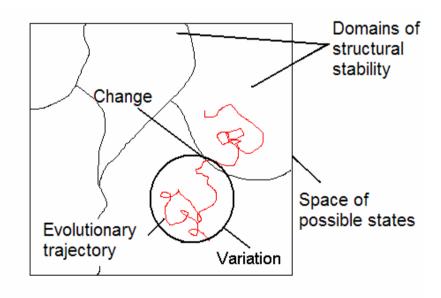
• « A complex dynamical system... consists of a set of interacting elements where the behavior of the total is an indirect, non-hierarchical consequence of the behavior of the different parts » [Steels, 1997]

Applied to various levels:

- Words & lexicon [Steels, 1996],
- Phonemes & phonological system [Lindblom, 1984]
- Idiolects & language of a community

Language is made of structures:

- A structure is a collection of interactions between elements building a set as a coherent whole and giving it its specific aspect
- Phonological system (significant oppositions), grammar, lexicon


Space of possible states

- The abstract space defined by all possible states of language
 - a muti-dimensional space, with continuous (eg. formantic values) or discrete dimensions (eg. word-order)

- Divided in domains of « structural stability »:
 - domains defined by a linguistic structure
 - all states in a domain correspond to the same structure
 - eg. allophonic variations for a phoneme

Language change

- Language evolves in the space of possible states according to various constraints
- Internal versus external forces (eg. [Labov, 2001])
- Variation: evolution of the system inside a domain of structural stability
- Language change
 - A structural change
 - From one domain to another



Internal constraints

- Cognitive constraints
 - Minimize the cognitive load during encoding & decoding (eg. working memory, access to data)
- Constraints in perception & production
 - Ease of the production vs. ease of the perception (eg. hypo-/hyper-correction [Ohala, 1993])
- Efficient transmission of information

External constraints (1)

- Sociolinguistics:
 - Language as a tool to assert one's identity [Labov, 1972]
- Individuals interact in complex social networks
 - role of social ties in actuation and implementation of changes
 - Contacts between languages
 - Contacts between dialects or registers

from [Milroy, 1992]

→ Impact language change & evolution in the communities

External constraints (2)

- From social ties to linguistic evolution
 - « from Bloomfield's principle of density, which argues that each communicative act is accompanied by a slight degree of convergence of linguistic systems of speaker and interlocutor. » [Labov, 2002]
 - « Anspach in The Why of Fashion (1967) argues that the initiating spark is the need of people to be like others and yet to be distinct from others » [Labov, 2001]
 - → Positive links: convergence of linguistic systems
 - → Negative links: (relative) divergence of linguistic systems

From a theoretical framework to a computational model

Task:

Derive a computational model from the preceding abstract descriptions

Why?

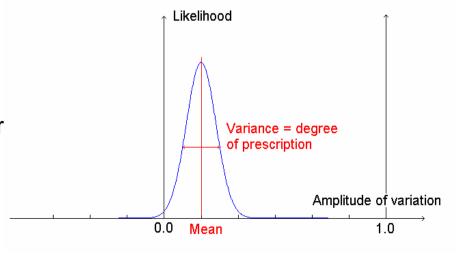
- 1. Possibility to investigate the dynamics of language change
- 2. Possibility to measure various features of language change given the social structure or the internal constraints
- 3. Few models integrate both internal & external constraints

How?

Outline

Underlying theoretical framework

Description of the model

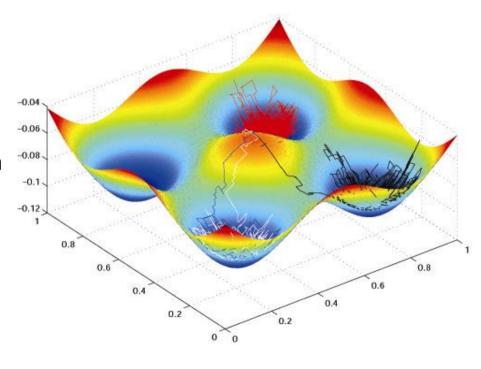

Parameters of the model

- N agents; each agent = one linguistic system
 - (x1, x2, ..., xm): linguistic variables of the system
- A social network to tie the agents
 - Links between -1.0 & 1.0 (0.0: no interaction)
- A function describing the natural constraints on each agent (for all variables)
- Assumption: same internal constraints for all agents

A model based on probabilistic distributions

- Constraints modelled by Gaussian probabilistic distributions:
 - A non-deterministic behavior...
 - which follows constraints on average
 - A distribution for each linguistic variable

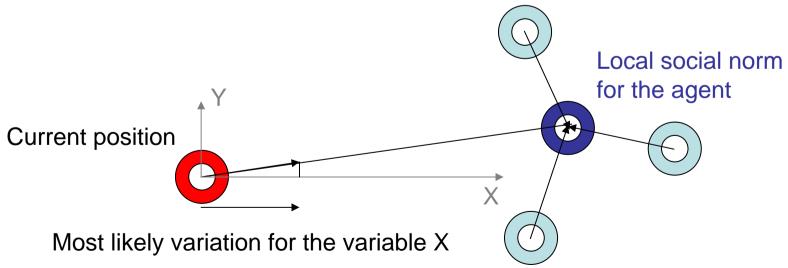
- Description of the Gaussian:
 - Mean = most likely variation
 - Variance
 - V = 0 → deterministic behavior
 - $V = +\infty \rightarrow$ fully random behavior



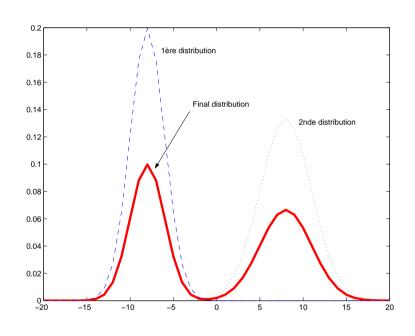
Modelling internal constraints

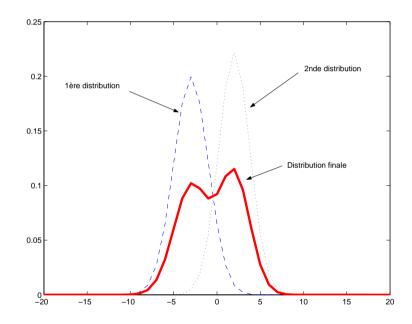
Notion of fitness landscape:

- from domains of structural stability to basins of attractions
- variation = evolution inside a basin of attraction
- change = jump from one attractor to another
- Most likely variation
 - • slope of the landscape for each variable
 - local topography
 - ←→ local view of the landscape
 - ←→ unplanned change


No need to know the whole landscape to compute local evolutions

A fitness landscape for two linguistic variables ([0,1]x[0,1])


Modelling external constraints


- For each agent:
 - Compute the sum of attractions and repulsions with other agents
 - → local social norm
 - → most likely variation ∞ (local social norm current position)

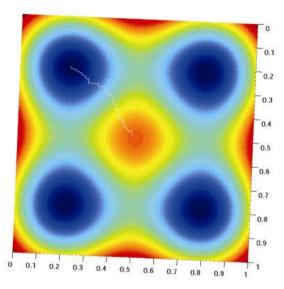
Integrating constraints

Mixture of Gaussians

- Constraints can either go in the same or opposite direction(s)
 - social constraints can run counter to internal constraints
 - link with linguistic diversity

Variables to be measured

- Rate of change:
 - Number of transitions between attractors per time period (flat landscape: length of the trajectory)
 - Evolution of the idiolects / evolution of the barycentre of the idiolects
- Diversity for N agents:
 - Dispersion in various basins of attraction (flat landscape: spatial entropy or, more easily, average distance to the barycentre of the agents)

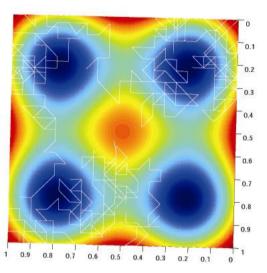

Outline

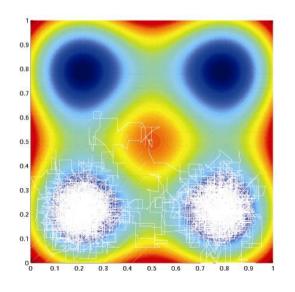
Underlying theoretical framework

Description of the model

First experiments

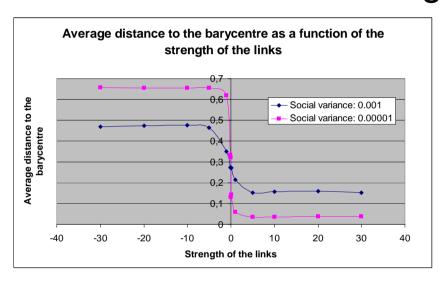
Testing a simple fitness landscape

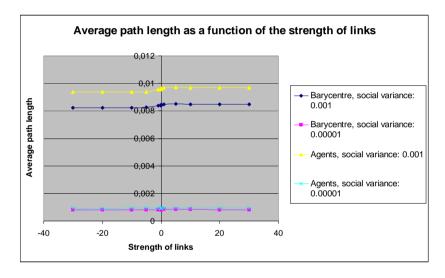

One agent

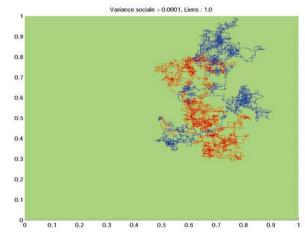


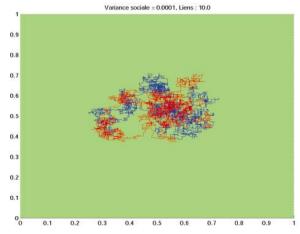
 $0 < V < +\infty \rightarrow$ periods of stability in basins of attraction + changes

→ Punctuated equilibriums

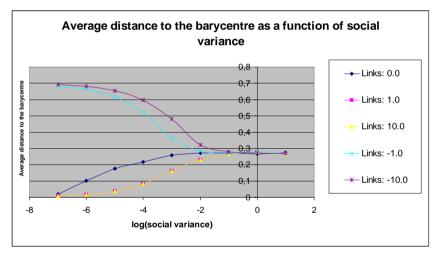


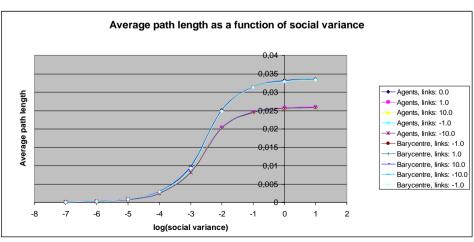




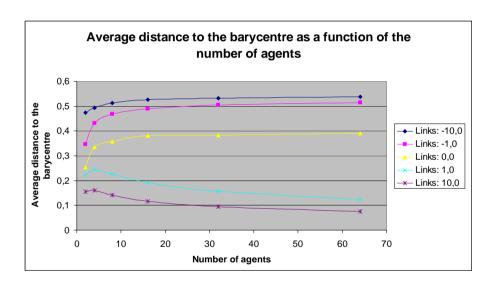

Simple social networks (1)

Influence of the strength of the link



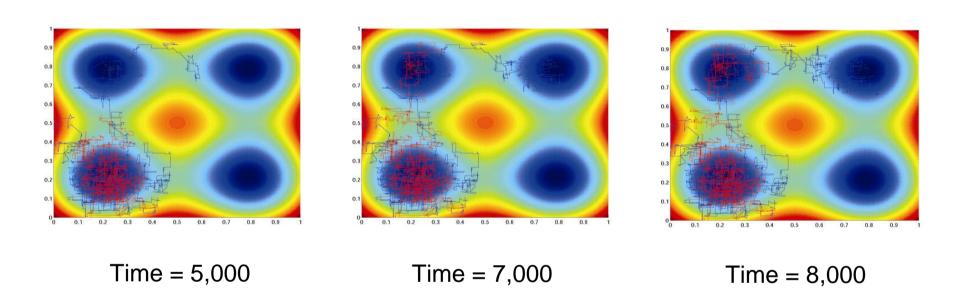


Simple social networks (2)


Weak or strong variance of the Gaussian distributions



Simple social networks (3)


Influence of the number of agents

Similarity with Nettle's results (Nettle, 1999)

Integrating external & internal constraints

Same results as with separated constraints:

- punctuated equilibriums
- influence of the social structure

Outline

Underlying theoretical framework

Description of the model

First experiments

Perspectives and work in progress

Toward realistic networks

- Increasing number of studies on specific networks
 - smallworld networks
 - scale-free networks
- → Impact on rate of change & diffusion of innovation?
- → Solving the threshold problem?
- → Evolution of languages during prehistory
- Take new parameters into account:
 - clustering coefficient
 - Average path length
 - See Ke & Gong's talk « Language change and social networks »
 - negative links and diversity

A 'real' exemple of internal constraints: phonological systems

- PSs as complex dynamical systems:
 - Interactions between vowels [Lindblom, 1984] [de Boer, 2001]
- Extracting knowledge from a database
 - The UPSID database: 451 PSs as a representative sample of world's langagues (Maddieson & Precoda 1989)
 - Statistical approach and GA to extract the relevant fitness landscape from the data

Conclusions

- A model integrating internal and external constraints in a single framework
 - quite technical (takes time to describe)
 - but captures a large number of situations (including previous models as naming games etc.)
- Key-points:
 - Investigate the impact of various social structures
 - Deal with highly-dimensional fitness landscapes
 - Possible additional features to the model: other descriptions of the linguistic systems
- Perspectives:
 - Integrate more data from real cases in the model (ex. UPSID)
 - Investigate the prehistory of languages by studying the impact of our predecessors' social structures

Thank you for your attention

Acknowledgements

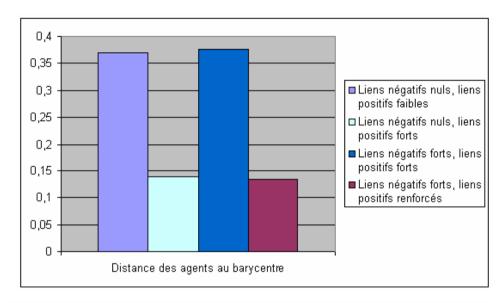
- Members of the « MEL » team (CNRS OHLL program)
- Members of the Language Engineering Laboratory, City Univ. of HK

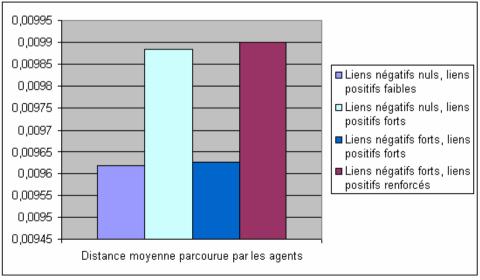
Limitations

- No interactions between social and natural constraints
 - only competition for the most likely variation
 - Specific influence of social ties on linguistic structures

```
Lardil (Queensland, Australie) (Evans, 2003)

Nya-rri ngithun thabu waangkur riwur.


1exc-du.HAR my elder.brother go:FUT east:FUT


« My elder brother and I will go east »
```

- Not a central phenomenon
- Independent computations for the linguistic variables

Prehistoric linguistic diversity and rate of evolution

- With time, increasing contacts between groups, slow increase of population density
- Human density and social networks (Jacquesson, 2000)
- An oversimplified scenario for the evolution of languages

