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Abstract� At Eurocrypt ���� Coppersmith presented a novel applica�
tion of lattice reduction to 
nd small roots of a univariate modular poly�
nomial equation� This led to rigorous polynomial attacks against RSA
with low public exponent� in some particular settings such as encryption
of stereotyped messages� random padding� or broadcast applications �a la

Hast�ad� Theoretically� these are the most powerful known attacks against
low�exponent RSA� However� the practical behaviour of Coppersmith�s
method was unclear� On the one hand� the method requires reductions of
high�dimensional lattices with huge entries� which could be out of reach�
On the other hand� it is well�known that lattice reduction algorithms out�
put better results than theoretically expected� which might allow better
bounds than those given by Coppersmith�s theorems� In this paper� we
present extensive experiments with Coppersmith�s method� and discuss
various trade�o�s together with practical improvements� Overall� prac�
tice meets theory� The warning is clear� one should be very cautious when
using the low�exponent RSA encryption scheme� or one should use larger
exponents�

� Introduction

One longstanding open problem in cryptography is to �nd an e�cient attack
against the RSA public key cryptosystem ����	 In the general case� the best

known method is factoring� although the equivalence of factorization and break

ing RSA is still open �note that recent results ��� suggest that breaking RSA
might be easier than factoring�	 However� under certain conditions� more e�

cient attacks are known �for a survey� see �
��	 One of these conditions is when
the public exponent is small� e�g� �	 This is the so
called low
exponent RSA�
which is quite popular in the real world	

The most powerful known attack against low
exponent RSA is due to Cop

persmith ��� ��	 At Eurocrypt ���� Coppersmith presented two applications ���
�� of a novel use of the celebrated LLL algorithm ��
�	 Both applications were
searches for small roots of certain polynomial equations� one for univariate mod

ular equations� the other for bivariate integer equations	 Instead of using lattice






reduction algorithms as shortest vector oracles� Coppersmith applied the LLL
algorithm to determine a subspace containing all reasonably short lattice points	
He then deduced rigorous polynomial attacks� as opposed to traditional heuristic
lattice
based attacks	

Finding small integer roots of a modular polynomial equation has great prac

tical signi�cance� for instance with the low
exponent RSA encryption scheme� or
the KMOV cryptosystem �see ����	 More precisely� in the case of low
exponent
RSA� such roots are related to the problems of encryption of stereotyped mes

sages� random padding and broadcast applications	

However� Coppersmith did not deal with practical issues� the practical be

haviour of his attack was unclear	 On the one hand� the method would a priori

require reductions of high
dimensional lattices with huge entries� in order to
achieve the theoretical bounds	 For instance� with a small example such as ��


bit RSA and a public exponent of �� Coppersmith�s proofs suggest to reduce
matrices of dimension over ���� and �����
digit entries	 Obviously� some ad

justements need to be made	 On the other hand� it is well
known that lattice re

duction algorithms output better results than theoretically expected	 Moreover�
one could apply improved reduction algorithms such as ����� instead of LLL	
Thus� if one uses smaller parameters than those suggested by Coppersmith�s
theorems� one might still obtain fairly good results	

In this paper� we present extensive experiments with Coppersmith�s method
applied to the low
exponent RSA case� and discuss various trade
o�s together
with practical improvements	 To our knowledge� only limited experiments �see ���
��� had previously been carried out	 Our experiments tend to validate Copper

smith�s approach	 Most of the time� we obtained experimental bounds close to
the maximal theoretical bounds	 For instance� sending e linearly related mes

sages to participants with the same public exponent e is theoretically insecure	
This bound seems unreachable in practice� but we were able to reach the bound
e � � in a very short time	 The warning is clear� one should be very cautious
when using low
exponent RSA encryptions� or one should use larger exponents	

The remainder of the paper is organized as follows	 In Section 
� we review
Coppersmith�s method	 In Section �� we recall applications of this method to
the low
exponent RSA encryption scheme	 We describe our implementation� and
discuss practical issues in Section �	 Finally� Section � presents the experiments�
which gives various trade
o�s	

� Coppersmith�s Method

In this section� we recall Coppersmith�s method� as presented in ���	 Let N be a
large composite integer of unknown factorization� and p�x� � x� � p���x

��� �
� � �� p�x

� � p�x� p�� be a monic integer polynomial	 We wish to �nd an integer
x� such that� for some � � ��

p�x�� � � �modN� ���

jx�j � X �
N �������



�
�



�

�
� means that we look for a reasonably short solution	 We select an integer h
such that�

h � max

�
� � � � ��

���
�

�

�

�
���

Let n � h�	 For �i� j� � ��������� ����h���� let the polynomial qi�j�x� � xip�x�j �
for which qi�j�x�� � � �modN j�	

A rational triangular matrix M is built using the coe�cients of the polyno

mials qi�j�x�� in such a way that an integer linear combination of the rows of
M corresponding to powers of x� and y� will give a vector with relatively small
Euclidean norm	 Multiplying by the least common denominator produces an in

teger matrix on which lattice basis reduction can be applied	 This will disclose
a certain linear relation satis�ed by all su�ciently short vectors	 Finally� this
relation will translate to a polynomial relation on x� over Z �not mod N� of
degree at most n� which we can solve over Z to discover x�	

The matrix M of size �
n� ��� �
n� �� is broken into four blocks�

M �

�
A B
� C

�
�

The n � �n � �� block B has rows indexed by g � ����n � ��� and columns
indexed by ��i� j� � n � i � �j � ��� with �i� j� � ������ � ����h � ��� so that
n � ��i� j� � 
n � �	 The entry at �g� ��i� j�� is the coe�cient of xg in the
polynomial qi�j�x�	 The �n� ��� �n� �� block C is a diagonal matrix� with the
value N j in each column ��i� j�	 The n� n block A is a diagonal matrix� whose
value in row g is a rational approximation to X�g�

p
n� where X is de�ned by

�
�	
The rows of M span a lattice	 In that lattice� we are interested in a target

vector s� related to the unknown solution x�	 Namely� we de�ne s � rM � where
r is a row vector whose left
hand elements are rg � xg�� and whose right
hand

elements are r��i�j� � �xi�yj� with y� � p�x���N 	 The vector r and the matrix
M were constructed in order to make s a short lattice point� with norm strictly
less than �	 Indeed� s has left
hand elements given by sg � �x��X�g�

p
n� and

right
hand elements equal to zero� as s��i�j� � qi�j�x���xi�y
j
�N

j � In other words�
the blocks B and C translate the polynomial modular equations qi�j�x�	 The
fact that x� satis�es these equations makes the right
hand elements of s equal
to zero	 And the upper bound of �
� on the root x� is expressed by the block A	
The diagonal coe�cients �balance� the left
hand elements of s	

In traditional lattice
based attacks� one would reduce the matrix M � and
hope that the �rst vector of the reduced basis is equal to the target vector �s	
But Coppersmith notices that computing this vector explicitly is not necessary	
Indeed� it su�ces to con�ne the target vector in a subspace� which we now detail	

As the right
hand elements n � � of the desired vector s are �� we restrict
our attention to the sublattice cM of M consisting of points with right
hand
elements �� namely M 	 �Rn �f�gn���	 It is possible to compute explicitly this
sublattice� by taking advantage of the fact that p�x� and hence qi�j�x� are monic
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polynomials� certain n� � rows of the block B form an upper triangular matrix
with � on the diagonal	 Thus� we can do elementary row operations on M to
produce a block matrix fM of the form�

fM �

�
� �
� I

�
�

where I is the �n � �� � �n � �� identity matrix	 The n � n upper
left block
represents the desired sublattice� an n
dimensional lattice� of which s is one
relatively short element	 In particular� M and cM have the same volume	

Next� we compute an LLL
reduced basis �b�� � � � �bn� of the matrix cM 	 From

the theoretical bounds of the LLL algorithm and the value of the volume of cM
�which can be bounded thanks to ��� and �
��� Coppersmith proved that any
lattice point of norm strictly less than � must lie in the hyperplane spanned by
b��b�� � � � �bn��	 In particular� s is such a lattice point	 In terms of the larger
matrix M � there is an n
dimensional space of vectors r such that rM � s has
��s in its right
hand n�� entries	 And those integer vectors r which additionally
satisfy s � � must lie in a space of dimension one smaller� namely dimension
n� �	 This gives rise to a linear equation on the entries rg � � � g � n	 That is�
we compute coe�cients cg such that� for any integer vector r � �rg � r��i�j�� such
that s � rM has right
hand entries � and ksk � �� we must have

P
cgrg � �� In

particular�
n��X
g��

cgx
g
� � ��

This is a polynomial equation holding in Z� not just modulo N 	 We can solve
this polynomial for x� easily� using known techniques for solving univariate poly

nomial equations over Z �for instance� the Sturm sequence ���� su�ces�	 This
shows�

Theorem � �Coppersmith�� Let p�x� be a polynomial of degree � in one vari�

able modulo an integer N of unknown factorization� Let X be the bound on the

desired solution x�� If X � �
�N

������ then in time polynomial in �logN� �� �����
we can �nd all integers x� with p�x�� � � �modN� and jx�j � X�

Corollary � �Coppersmith�� With the same hypothesis� except that X �
N���� then in time polynomial in �logN� 
��� we can �nd all integers x� such

that p�x�� � � �modN� and jx�j � X�

Proof� See ���	 The result is obtained by applying the previous theorem four
times� with � � �� log�N 	 ut

This is a major improvement over the bound N���������	 which was previously
obtained in ����	 But� theoretically� one would a priori need the following pa

rameters in order to achieve the theoretical bound N��� � � � �� log�N and
h 
 ����� log�N��

�	 For example� if we take � � � and a ��

bit number N� this
means reducing several ������� matrices with entries at least as large as Nh���
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that is �����
digit numbers � Unfortunately� that appears to be a drawback of
Coppersmith�s improvement	 Indeed� instead of using only the polynomial p�x�
�such as in ������ Coppersmith introduced shifts and powers of this polynomial	
This enlarges the volume of the lattice M � which is what makes the target vector
more and more short compared to other lattice points� but at the expense of the
size of the entries	 In other words� the larger the entries are� the better the bound
is supposed to be� and the more expensive the reduction is	 This leads to several
questions� is Coppersmith�s method of any use in real life � How much can we
achieve in practice � How do the practical bounds compare with the theoretical
bounds � We will answer these questions in Sections � and �	

� Applications to Low�Exponent RSA

We brie�y review some applications of Coppersmith�s method	 More can be
found in ���	

��� Stereotyped messages

Suppose the plaintext m consists of two pieces� a known piece B � 
kb� and an
unknown piece x	 If this is RSA
encrypted with an exponent of �� the ciphertext
c is given by c � m
 � �B � x�
 �modN�	 If we know B� c and N we can
apply the previous results to the polynomial p�x� � �B � x�
 � c� and recover
x� satisfying

p�x�� � �B � x��
 � c � � �modN��

as long as such an x� exists with jx�j � N��
	 The attack works equally well if
the unknown x� lies in the most signi�cant bits of the message m rather than
the least signi�cant bits	

��� Random padding

Suppose two messages m and m� satisfy an a�ne relation� say m� � m � r	
Suppose we know the RSA
encryptions of the two messages with an exponent
of ��

c � m
 �modN�

c� � �m��
 � m
 � �m�r � �mr� � r
 �modN�

We can eliminate m from the two equations above by taking their resultant�
which gives a univariate polynomial in r of degree �� modulo N �

r� � ��c� �c��r� � ��c� � 
�cc� � ��c����r
 � �c� c��
�

Thus� if jrj � N���� we can theoretically recover r� from which we can derive the
message m � r�c� � 
c� r
���c� � c � 
r
� �modN� �see ����	
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��� Broadcast attacks

As was pointed out in ���� ��� Coppersmith�s result improves known results of
H�astad ���	 We consider the situation of a broadcast application� where a user
sends linearly related messages mi to several participants with public exponent
ei and public modulus Ni	 That is� mi � 	im�
i �mod Ni�� for some unknown
m and known constants 	i and 
i	 This precisely happens if one sends a similar
message with di�erent �known� headers or time
stamps which are part of the
encryption block	

Let e � max ei	 If k such messages mi are sent� the attacker obtains k poly

nomial equations pi�m� � � �modNi� of degree ei � e	 Then we use the Chinese
Remainder Theorem to derive a polynomial equation of degree e�

p�m� � � �mod N��where N �

kY
i��

Ni�

And thus� by Coppersmith�s method� we can theoretically recover m if jmj �
N��e	 In particular� this is satis�ed if k � e	 This improves the previous bound
k � e�e � ���
 obtained by H�astad	

� Implementation

In Section 
� we saw that Coppersmith�s method required reductions of high

dimensional lattices with huge entries	 This is because the proof uses the param

eter � which induces a choice of h	 Actually� � is only of theoretical interest� as
h is the natural parameter	 In practice� one would rather choose h and ignore
�� so that the matrix and its entries are not too large	 To compute the theoret

ical maximal rootsize �for a �xed h�� one needs to look back at Coppersmith�s
proof	 However� we will obtain this maximal rootsize from another method� due
to Howgrave
Graham �see ����	 It can be shown that from a theoretical point of
view� the two methods are strictly equivalent� they provide the same bounds�
and they have the same complexity	 But Howgrave
Graham�s method is simpler
to implement and to analyze� so that the practical behaviour of Coppersmith�s
method is easier to explain with this presentation	

��� Howgrave�Graham	s method

We keep the notations of Section 
� a monic polynomial p�x� of degree � a bound
X for the desired solutions modulo N  and h a �xed integer	 In both methods� one
computes a polynomial r�x� of degree at most n � h� for which small modular
roots of p�x� are also integral roots of r�x�	 In Coppersmith�s method� such a
polynomial is deduced from the hyperplane generated by the �rst vectors of a
reduced basis of a certain n
dimensional lattice	 In Howgrave
Graham�s method�
any su�ciently short vector of a certain n
dimensional lattice can be transformed
into such a polynomial	 Actually� these two lattices are related to each other by



�

duality	 Coppersmith uses lattice reduction to �nd a basis for which su�ciently
short vectors are con�ned to the hyperplane generated by the �rst vectors of the
basis	 But this problem can also be viewed as a traditional short vector problem
in the dual lattice� a fact that was noticed by both Howgrave
Graham ��� and
Jutla ����	

Given a polynomial r�x� �
P

aix
i � Z�x�� de�ne kr�x�k �

pP
a�i 	

Lemma � �Howgrave�Graham�� Let r�x� � Z�x� of degree n� and let X be a

positive integer� Suppose kr�xX�k � M�
p
n� If r�x�� � � �modM� and jx�j � X�

then r�x�� � � holds over the integers�

Proof� Notice that jr�x��j � jP aix
i
�j �

P jaiX ij � kr�xX�kpn � M� Since
r�x�� � � �modM�� it follows that r�x�� � �	 ut
The lemma shows that a convenient r�x� � Z�x� is a polynomial with small norm
having the same roots as p�x� modulo N 	 We choose such a polynomial as an
integer linear combination of the following polynomials �similar to the qi�j �s of
Coppersmith�s method��

qu�v�x� � Nh���vxuf�x�v �

Since x� is a root of qu�v�x� modulo Nh��� r�xX� must have norm less than
Nh���

p
n to use the lemma	 But this can be seen as a short vector problem in

the lattice corresponding to the qu�v�xX�	 So we de�ne a lower triangular n� n
matrix M whose i
th row consists of the coe�cients of qu�v�xX�� starting by the
low
degree terms� where v � b�i � ����c and u � �i � ��� �v	 It can be shown
that�

det�M� � Xn�n�����Nn�h������

We apply an LLL
reduction to the lattice spanned by the rows of M 	 The �rst
vector of the reduced basis corresponds to a polynomial of the form r�xX�	 And
its Euclidean norm is equal to kr�xX�k	

One the one hand� to apply the lemma� we need �

kr�xX�k � Nh���
p
n�

On the other hand� the theoretical bounds of the LLL algorithm guarantee that
the norm of the �rst vector satis�es�

kr�xX�k � 
�n����
 det�M���n � 
�n����
X�n�����N �h������

Therefore� a su�cient condition for the method to work is�


�n����
X�n�����N �h����� � Nh���
p
n�

Hence� for a given h� the method is guaranteed to �nd modular roots up to X
if�

X � �p


N �h�����n���n����n��� ���



�

This is also the expression found by Coppersmith in ��� �p	 
���	 And the limit
of this expression� when h grows to �� is �p

�
N���	 But what is worth noticing

is that the logarithm of that expression� as a function of h� is quite concave �see
Figure ��	 This means that small values of h should already give results close
to the limits	 And hopefully� with a small h� the lattice is low
dimensional and
its entries are not excessively large	 This indicates that Coppersmith�s method
should be useful in real life	 Fortunately� we will see that experiments con�rm
this prediction	

Fig� �� Bit�length of the bound X for � � � and RSA�
��� as a function of h�
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��� Limits of the method

It is well
known that lattice reduction algorithms perform better in practice
than theoretically expected	 And when the LLL algorithm does not provide
su�ciently short vectors� one can turn to improved lattice reduction algorithms
such as Schnorr�s ����	 However� a simple argument shows that Coppersmith�s
method and its variants are inherently limited� no matter how good the reduction
algorithm is	

Indeed� if we assume that the lattice M to be reduced is �random�� there
are probably no lattice points of M signi�cantly shorter than det�M���n� that
is X�n�����N �h�����	 And therefore� since the conditions of lemma � are quite
tight� any lattice reduction algorithm will not detect roots much larger than�

N �h�����n���n����n����

Compared to ���� only the factor ��
p


 is removed� which is a very small im

provement	 Thus� it is likely that when the LLL algorithm fails to provide the
solution� other lattice reduction algorithms will not help	 The bound provided
by ��� is probably tight	



�

��� Complexity

In both Coppersmith�s method and Howgrave
Graham�s method� the most ex

pensive step is the lattice reduction step	 The matrices to be reduced have the
same dimension n � h�� and the size of their entries are similar	 Therefore� from
a theoretical point of view� the methods have the same complexity	 We assume
that X is chosen less than N���	

The worst
case complexity of the LLL algorithm is O�n�d log
R� where n is
the lattice dimension� d is the space dimension and R an upper bound for the
squared norms of the basis vectors	 So the method has worst
case complexity
O�n� log
R� where R is an upper bound for all the kqu�v�xX�k�	 We have�

kqu�v�xX�k� � N��h���v�X�ukp�xX�vk��

All the coe�cients of p�xX� are less than N�	 It follows that�

kp�xX�vk� � N
vk�� � x � � � �� x��vk� � N
v�� � ���v�

Therefore�

kqu�v�xX�k� � N��h���v�X�u�� � ���v � N�h�
X������ � ���h���

Thus� the complexity is O�n���
h � � � �
� � 
���� logN � �
h � 
��� � ���
��
that is�

O�h����log
N � � log�N � �� logN � �
���

For large N compared to �� this is O�h��� log
N�	 And that means large values
of h and � are probably not realistic	 It also means that the running time of the
method should be more sensitive to an increase of h� than an increase of �� or
an increase of the size of the modulus N 	

� Experiments

Our implementation uses the NTL library ���� of Victor Shoup	 Due to the size
of the entries� we had to use the �oating point versions of reduction algorithms
with extended exponent	 Timings are given for a ��� MHz DEC Alpha	 We used
two sorts of computers� ��
bit ��� MHz DEC Alpha using Linux and ��
bit 
��
MHz Sparc Ultra

i using Solaris	 It is worth noticing that for large reductions�
the Alpha was about � times faster than the Ultra	 In part� this is because we
were able to use a ��
bit compiler for the Alpha� but not for the Ultra and the
clock frequency of the Alpha is twice as high than the one of the Ultra	

We implemented both Coppersmith�s method and its variant by Howgrave

Graham	 The running times and the results are very similar� but Howgrave

Graham�s method is simpler to implement	 Therefore� the tables given here hold
for both methods	



��


�� Running times

Tables �� 
 and � show the running time of the reduction stage� as a function
of the parameter h and the polynomial degree �� for di�erent sizes of moduli	
The polynomial was randomly chosen	 The other parts of the method� such as
computing the integral roots of the polynomial found� are negligible compared
to the reduction stage	

In Section �� we saw that the worst
case complexity was O�h��� log
N�	 The
running times con�rm that an increase in h is more expensive than an increase
in �	 But the dominant factor is n � h�	 If � is not small� only small values of h
are realistic	 And if h is chosen large� only small values of � are possible	

Doubling the size of the modulus from RSA
��
 to RSA
��
� roughly mul

tiplies by � the running times	 And doubling the size of the modulus from RSA

��
� to RSA

��� roughly multiplies by �	� the running times	 From the com

plexity� one would expect a multiplication by �	 It turns out that the method
is practical even for very large N 	 And therefore� one would expect broadcast
attacks with small exponent to be practical� as they multiply the size of the mod

ulus by the number of linearly related messages� but keep the �low� polynomial
degree unchanged	

Table �� Running time �in seconds�� as a function of h and �� for RSA�
���

Parameter h Polynomial degree �
� � � 
 � 	 � � ��

� � ���� ���� ���� ��
	 ���� ��	� ��� ���

� ���	 ���� ���� ���� 
�	� �� �� �� 
�

� ���	 ���� 
��� �� �� �� ��� ��� ���


 ���� ���� �� 
� ��� ��� �

 		� ��	�

� ���� �� 

 ��� ��� 	�� ���
 ���� �		�

	 
��� �	 �
� ��
 ��� ���� ���	 ��
	 ��	�

� �� �� ��� ��� ���� ���� 	�	� ��	�
 ��
��

� �� ��� ��� ���� ���� �			 �	��� �	��� �����

�� �� ��� ���� ���
 ���� �
��	 ����� �	��� �����

�� 	� 
�� ���� ���� �
��� ����� 
���� �����

�� ��� ��� ���
 ���
� �
��	 ����� �����

�� ��� �
�� �
�� �	��� ����� ����� �
��
�

�� ��� ���� ����� ��	�
 �
��	

�
 �	� ���	 �
��
 ���
�

�� 	�� 
�
	 �
�
� ���
�

�	 ���� ���� ����
 ��
��

�� ���	 ����� 
���
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Table �� Running time �in seconds�� as a function of h and �� for RSA������

Parameter h Polynomial degree �
� � � 
 � 	 � � ��

� ���� ���� ���	 ���� ���� ���� 
��	 ��
� ��

� ���� ���� ��	� ���� �� �� 	� ��� ���

� ���� 
��� �� 
	 ��� �	� ��� ��� ����
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Table �� Running time �in seconds�� as a function of h and �� for RSA������
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�� Experimental bounds

For a given choice of h and �� one can theoretically �nd roots as large as X �
N �h�����n���n����n����

p

� where n � h�	 However� in practice� one has to use

�oating point versions of lattice reduction algorithms� because exact versions
�using only integer arithmetic� are quite expensive� especially with this size of
entries	 This means that the basis obtained is not guaranteed to be LLL
reduced�
and therefore� the upper bound X cannot be guaranteed either	 But� in practice�
in all our experiments� the basis obtained was always LLL
reduced� and thus�
we have always been able to �nd roots as large as the bound	 Approximation
problems occur only when the lattice dimension is very high �larger than say�
����� which was not the case here	 When the LLL algorithm failed to provide a
su�ciently short vector� we applied improved lattice reduction algorithms	 But
as expected �see the previous section�� it did not help� the method is inherently
limited by the value of the lattice determinant	

We only made experiments with the case of an RSA encryption using � as a
public exponent	 Coppersmith
like attacks are useful only for a very small expo

nent such as �� because the polynomial degree must be very small for e�ciency�
and the roots cannot be much larger than the size of the modulus divided by the
polynomial degree	 For instance� a public exponent of ����� is not threatened
by Coppersmith�s method	 One should also note that these attacks do not re

cover the secret factorization� they can only recover the plaintext under speci�c
conditions	

Stereotyped messages� This case corresponds to � � �	 Table � give the
bounds obtained in practice� and the corresponding running times	 The bound
of ��� is tight� we never obtained an experimental bound X more than twice
as large as the theoretical bound	 There is a value of h which gives the best
compromise between the maximal rootsize and the running time	 Of course� this
value depends on the implementation	 If one wants to compute roots larger than
the corresponding rootsize� one should treat the remaining bits by exhaustive
search� rather than by increasing h	 Here� this value seems to be slightly larger
than ��	

Table �� Bounds and running time for stereotyped messages

Size of N Data type Parameter h
� � � 
 � 	 � � �� �� �� �� �
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� �	� ��� ��� ��	 ��� ��
 ��� ��� ��� ��� ���
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Random padding� This case corresponds to � � �	 Table � give the bounds
obtained in practice� and the corresponding running times	 Note that for this
case� the experimental bound X had a few bits more than the theoretical bound
for small values of h� which is why we added new data in the table	 Again� there
is a value of h which gives the best compromise between the maximal rootsize
and the running time	 This value seems to be h � � for RSA
��
 and RSA

���� and h � � for RSA
��
�	 In all these cases� the running time is less than
than a few minutes� and the corresponding rootsize is not far from the maximal
theoretical rootsize �corresponding to h � ��	

Note that the running time is signi�cantly less than the one given in tables ��

 for � � �	 This is because the polynomial of degree � is of particular form here�
as it is quite sparse	

Table �� Bounds and running time for random padding

Size of N Data type Parameter h
� � � 
 � 	 � � �� �
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Seconds ��	� � �� �	 ��� 	�� ���� ���� ��	�

Broadcast applications� We consider the situation of a broadcast application�
where a user sends k linearly related messages mi �built from an unknown mes

sage m� to several participants with public exponent ei � e and public modulus
Ni	 Theoretically� Coppersmith�s method should recover the message m� as soon
as k � e	 The problem is that the case k � e corrresponds to a large value of
h� which is unrealistic in practice� as shown in Table �	 Table � give the bounds
obtained in practice� and the corresponding running times for a public exponent
of � �which corresponds to � � ��� depending on the number of linearly related
messages and the size of the modulus N 	 When one allows e � � messages� the
attack becomes practical	 We have always been able to recover the message when
e � � and � messages are sent� with a choice of h � � �the value is h � � is a bit
tight�	 The corresponding running time is only a few minutes� even with RSA

��
�	 For larger exponents �and thus� a larger number of necessary messages��
the method does not seem to be practical� as the running time is very sensitive
to the polynomial degree � and the parameter h	
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Table �� Bounds and running time for broadcast attacks with public exponent �

Size of N Messages Data type Parameter h
� � � 
 � �
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� Conclusion

We presented extensive experiments with lattice
based attacks against RSA with
low public exponent� which validate Coppersmith�s novel approach to �nd small
roots of a univariate modular polynomial equation	 In practice� one can� in a
reasonable time� achieve bounds fairly close to the theoretical bounds	 We also
showed that these theoretical bounds are essentially tight� in the sense that one
cannot expect to obtain signi�cantly better results in practice� regardless of the
lattice reduction algorithm used	

The experiments con�rm that sending stereotyped messages with a small
public exponent e is dangerous when the modulus size is larger than e times
the size of the hidden part �consecutive bits�	 Random padding with public
exponent � is also dangerous� as while as the modulus size is larger than � times
the padding size	 Interestingly� H�astad
like attacks are practical� if a user sends �
linearly related messages encrypted with public exponent �� then one can recover
the unknown message in a few minutes� even for ��
�
bit modulus	 Note that this
improves the former theoretical bound of � messages obtained by H�astad	 For �
messages� one can recover the message if the unknown part has signi�cantly less
bits than the modulus	

This stresses the problems of the low
exponent RSA encryption scheme	 How

ever� it only applies to the case of very small public exponents such as �	 It does
not seem to threaten exponents such as �����	 And these attacks do not seem
to apply to the RSA signature scheme with a small validating exponent	
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