Université de Paris 8 \& Laboratoire de Sciences Cognitives et Psycholinguistique, EHESS-ENS-CNRS - www.Iscp.net/persons/peperkamp

Statistical inferences and linguistic knowledge in early phonological acquisition

Sharon Peperkamp

Emmanuel Dupoux, Rozenn Le Calvez, Jean-Pierre Nadal, Katrin Skoruppa

Early language acquisition: evidence for statistical inferences

- segments: distribution of tokens within the acoustic space (Maye, Werker \& Gerken 2002)
- exposure: monomodal or bimodal [ta]-[da] continuum
- testing: discrimination of [ta]-[da]
- phonotactics: distribution of segments in onsets vs. codas (Chambers, Onishi \& Fischer 2002; Saffran \& Thiessen 2003)
- exposure: CVC syllables with different sets of onset and coda consonants
- testing: listening time for new syllables in which the consonant phonotactics are respected or not
word segmentation: transitional probabilities (Saffran, Aslin \& Newport 1996)
- exposure: continuous speech stream consisting of 4 trisyllabic non-words (tupirobidakupadotigolabubidaku...)
- testing: listening time for words (bidaku) and part-words (kupado)

Early language acquisition: evidence for linguistic inferences

- segments: generalization within a natural class (Maye \& Weiss 2003)
- exposure: monomodal or bimodal [ta]-[da] continuum
- testing: discrimination of [ka]-[ga]
- phonotactics: better learning in case of natural classes than unnatural classes (Saffran \& Thiessen 2003)
- natural classes:
/p,t,k/ in onsets, /b,d,g/ in codas
- unnatural classes: /p,d,k/ in onsets, /b,t,g/ in codas

This talk

- Examine the respective roles of statistical and linguistic interferences for the acquisition of underlying representations
- Two complementary approaches
- modeling: simulation on phonetically-transcribed speech
- experiments: artificial language-learning paradigm

Acquisition of underlying representations

- establish phoneme inventory:

Spanish								
	bilabial	labiodental	dental	alveolar	postalveolar	palatal	vel	
stops	p b		t d				k	g
fricatives		f v	θ	S			X	
nasals	m		n			n		
trills				r				
flaps			¢					
affricates					t $\int^{\text {d }}$			
laterals				1		K		

Acquisition of underlying representations

- establish phoneme inventory:
- on the basis of a segment inventory:

Acquisition of underlying representations

- establish phoneme inventory:
- on the basis of a segment inventory:

Spanish							
	bilabial	labiodental	dental	alveolar	postalveolar	palatal	velar
stops	p b		t d				
fricatives	β	f v	θ ©	s (z)			$\mathrm{x} \quad \mathrm{r}$
nasals	m	m	n			n	1
trills				r			
flaps			r				
affricates					tf d3		
laterals				1		κ	

Acquisition of segment inventory

- age: between 6-12 months (Polka \& Werker 1994; Werker \& Tees 1984)
- method: prototype formation (Kuhl 1991; Kuhl et al. 1997; Maye, Werker \& Gerken 2002)

Acquisition of phoneme inventory

- age: unknown
- method:
- semantics $\begin{array}{ll}\text { [eldisko] } & \text { 'the disk' } \\ \text { [miðisko] } & \text { 'my disk' }\end{array}$
- distributional analysis
[$ð$]: intervocalically
[d]: elsewhere
- objective: test the feasibility of the distributional mechanism
- algorithm: look for complementary distributions of segments

A statistical algorithm

- Problems with basic algorithm
- not robust to noice (production and/or perception errors)
- fails to detect optional rules
- Solution: look for near-complementary distributions
- for each segment, list the contexts in which it appears
- for each pair of segments, compare the distributions of their contexts, by means of the Kullback-Leibler dissimilarity measure:

$$
m_{K L}\left(s_{1}, s_{2}\right)=\sum_{c}\left(P\left(c \mid s_{1}\right) \quad \log \left(\frac{P\left(c \mid s_{1}\right)}{P\left(c \mid s_{2}\right)}\right)+P\left(c \mid s_{2}\right) \quad \log \left(\frac{P\left(c \mid s_{2}\right)}{P\left(c \mid s_{1}\right)}\right)\right)
$$

A statistical algorithm

- For segment pairs with a KL number above some threshold, determine the default phone
- the default segment is more frequent and appears in more contexts than the allophone
- criterion of relative entropy:

Validation on artificial corpora

- 46 phonemes with equal relative frequencies
- 1 phoneme has an allophone in 8 contexts
- utterances composed of random strings

Validation on artificial corpora

- 46 phonemes with equal relative frequencies
- 1 phoneme has an allophone in 8 contexts
- utterances composed of random strings

A statistical + linguistic algorithm

- Problem with statistical algorithm:
- false alarms due to phonotactics (e.g. French: [$\widehat{\delta}$] only before vowels (pluie), [¿] only before consonants (peur))
- Solution: add a linguistically motivated filter
- default phone and allophone are phonetically close
- the context of a rule spreads a phonetic feature onto its targets

A statistical + linguistic algorithm

- Define each segment as a numerical vector encoding five articulatory properties (place, sonority, voicing, nasality, lip rounding)
- Criteria for detecting false alarms
- there is a segment between default segment and the allophone:

$$
\begin{aligned}
& \exists s, \forall i \in\{1, . .5\}, v_{i}\left(s_{a}\right) \leq v_{i}(s) \leq v_{i}\left(s_{d}\right) \\
& \text { or } \forall i \in\{1, . .5\}, v_{i}\left(s_{d}\right) \leq v_{i}(s) \leq v_{i}\left(s_{a}\right)
\end{aligned}
$$

- the allophone is more distant from its contexts then the default segment:

$$
\exists i \in\{1, . .5\} ;\left|\sum_{s \in\left[s_{a}\right]}\left(v_{i}\left(s_{a}\right)-v_{i}(s)\right)\right|>\left|\sum_{\left.s \in \in \subseteq s_{d}\right]}\left(v_{i}\left(s_{d}\right)-v_{i}(s)\right)\right|
$$

Test on natural corpus

- CHILDES corpus
- 42.000 short utterances of French parents to their children
- transcribed phonemically
- Implementation of two allophonic rules:
- palatalisation of /k/ and /g/ before /i,y, 米, ৬,e, $\star, \mathrm{j}, \stackrel{\rightharpoonup}{ } /$
- devoicing of /r,l,m,n, © , «, j/ before /p,t,k,f,s, $/ /$
- Corpus statistics:
- Total number of segments:

35 default segments +
$(2+7)$ allophones $=44$

- Total number of segment pairs: 946

Peperkamp et al., submitted

Peperkamp et al., submitted

Peperkamp et al., submitted

Peperkamp et al., submitted

Peperkamp et al., submitted

Summary

- Allophonic rules can be discovered in the absence of lexical knowledge on the basis of distributional information
- Linguistic knowledge concerning the nature of phonological rules is sufficient to discard false alarms
- Possible extensions
- rule interaction
- linguistic filter based on acoustic rather than articulatory distance (cf. Mielke 2005)
- Next step: test if infants are sensitive to complementary distributions and if it matters if the allophonic groupings are natural or not (work in progress with Jim Morgan)

Experiments

- Test if adults use linguistic knowledge when learning novel phonological rules
- Method: artificial language learning paradigm
- natural versus unnatural allophonic rule

Experiment 1

- Two artificial languages:

Language A
 Language B

stops
/ p t k b dg/ /p t k/
fricatives /f s $/$ /f s \int v z 3 /

Experiment 1

- Two artificial languages:

Language A
 Language B

stops
/ptkbdg/ /ptk/
fricatives /f s $\int /$ /fs $\int \mathrm{vz} 3$ /

Experiment 1

- Two artificial languages:

$$
\text { Language } \mathbf{A} \quad \text { Language } B \quad \text { French }
$$

- Two natural allophonic rules:

Language A: intervocalic fricative voicing
Language B: intervocalic stop voicing

- Determinant + noun phrases:
nel 'two'
ra 'three'
nouns begin with a stop or fricative

Exposure：phrase－picture pairings

Language A Language B

ra bemuf

Exposure：phrase－picture pairings

Language A
 Language B

6限 nel bovi
限 nel povi
（作 ra bovi
伯 ra bovi

限
nel vulek
ra vulek

Test I: phrase production, known items

Language A:
(6) ra pemuf

Language B: (Ba ra bemuf

Test II: phrase production, new items

Language A:
(6) ra pura

Language B: 用 ra bura

Experimental details

- Exposure phase (15 minutes):
- 8 lexical items
- 4 stop-initial
- 4 fricative-initial
- each item appears in 2 phrases (one with nel one with $r a)$, repeated 16 times each
- Test phase:
- 8 old items
- 32 novel items

Results

Results

Experiment 2

- Same segment inventories, different phoneme inventories:

	Language A	Language B
stops	[p k b d g]	[ptkbdg]
fricatives	[$\mathrm{s} \int \mathrm{fvz} 3$]	[f 5 vz3]

Language A

[p k b d g]
[$\mathrm{s} \int \mathrm{vz} 3$]
[f 5 vz 3]

- Two unnatural rules:

Language A:/z/ \rightarrow [t], /g/ \rightarrow [f], /p/ \rightarrow [3] / V_V
Language $\mathrm{B}: / \mathrm{v} / \rightarrow[\mathrm{k}], / \mathrm{S} / \rightarrow[\mathrm{b}], / \mathrm{d} / \rightarrow[\mathrm{s}] / \mathrm{V}_{\mathrm{L}} \mathrm{V}$

Results

Results

Summary

- Adults can learn the distinction between phonemic and allophonic contrasts within 15 minutes of exposure to an artificial language, but only if the allophonic groupings are phonetically natural
- Experiments 3 and 4:
- as experiments 1 and 2 , but with a perception rather than a production task

Test I: phrase-picture matching, known items

限 nel pemuS

随 ra bemus

Test II: phrase-picture matching,

new items

Results exp. 3: natural rule

Peperkamp \& Dupoux, to appear

Results exp. 3: natural rule

Peperkamp \& Dupoux, to appear

Results exp. 4: unnatural rule

$\mathrm{N}=12$
Peperkamp \& Dupoux, to appear

Results exp. 4: unnatural rule

Peperkamp \& Dupoux, to appear

Discussion

- Effect of phonetic naturalness with a production but not with a perception task
- Two possible explanations
- task difference: free response in production, forced choice in perception
\rightarrow make the perception task harder
- perception is not constrained by UG, but by a general algebraic learning system (Marcus et al, 1999)
\rightarrow validate the present results with pre-school children and, ultimately, with infants

Conclusion

- Both statistical and linguistic inferences seem necessary to acquire underlying representations
- Further research is necessary to
- empirically demonstrate the presence of both types of inferences in infants
- determine the precise nature of the linguistic inferences

