Université de Paris 8 & Laboratoire de Sciences Cognitives et Psycholinguistique, EHESS-ENS-CNRS - www.lscp.net/persons/peperkamp

Statistical inferences and linguistic knowledge in early phonological acquisition

Sharon Peperkamp

Emmanuel Dupoux, Rozenn Le Calvez, Jean-Pierre Nadal, Katrin Skoruppa

Workshop on Phonological Systems and Complex Adaptive Systems, July 4-6 2005, Lyon

Early language acquisition: evidence for statistical inferences

- *segments*: distribution of tokens within the acoustic space (Maye, Werker & Gerken 2002)
 - exposure: monomodal or bimodal [ta]-[da] continuum
 - testing: discrimination of [ta]-[da]
- *phonotactics*: distribution of segments in onsets vs. codas (Chambers, Onishi & Fischer 2002; Saffran & Thiessen 2003)
 - exposure: CVC syllables with different sets of onset and coda consonants
 - testing: listening time for new syllables in which the consonant phonotactics are respected or not
- *word segmentation*: transitional probabilities (Saffran, Aslin & Newport 1996)
 - exposure: continuous speech stream consisting of 4 trisyllabic non-words (tupirobidakupadotigolabubidaku...)
 - testing: listening time for words (bidaku) and part-words (kupado)

Early language acquisition: evidence for linguistic inferences

- *segments*: generalization within a natural class (Maye & Weiss 2003)
 - exposure: monomodal or bimodal [ta]-[da] continuum
 - testing: discrimination of [ka]-[ga]
- *phonotactics*: better learning in case of natural classes than unnatural classes (Saffran & Thiessen 2003)
 - natural classes:
 - unnatural classes:

/p,t,k/ in onsets, /b,d,g/ in codas /p,d,k/ in onsets, /b,t,g/ in codas

This talk

• Examine the respective roles of statistical and linguistic interferences for the acquisition of underlying representations

- Two complementary approaches
 - *modeling*: simulation on phonetically-transcribed speech
 - experiments: artificial language-learning paradigm

Acquisition of underlying representations

• establish *phoneme* inventory:

Spanish							
	bilabial	labiodental	dental	alveolar	postalveolar	palatal	velar
stops	p b		t d				k g
fricatives		f v	θ	S			Х
nasals	m		n			ŋ	
trills				r			
flaps			ſ				
affricates					t∫ dʒ		
laterals				1		У	

Acquisition of underlying representations

- establish *phoneme* inventory:
- on the basis of a *segment* inventory:

Spanish							
	bilabial	labiodental	dental	alveolar	postalveolar	palatal	velar
stops	рb		t d				k g
fricatives	ß	f v	θ (ð)	s Z			x x
nasals	m	m	n	Ŭ		ŋ	ŋ
trills		Ŭ		r			Ŭ
flaps			ſ				
affricates					t∫ dz		
laterals				1		λ	

Acquisition of underlying representations

- establish *phoneme* inventory:
- on the basis of a *segment* inventory:

Spanish							
	bilabial	labiodental	dental	alveolar	postalveolar	palatal	velar
stops	рb		t d				k g
fricatives	β	f v	θδ	s Z			x Y
nasals	m	ŋ	n			ŋ	ŋ
trills				r			
flaps			ſ				
affricates					t∫ dʒ		
laterals				1		У	

Acquisition of segment inventory

- age: between 6-12 months (Polka & Werker 1994; Werker & Tees 1984)
- method: prototype formation (Kuhl 1991; Kuhl *et al.* 1997; Maye, Werker & Gerken 2002)

Acquisition of phoneme inventory

- age: unknown
- method:

semantics
[eldisko] 'the disk'
[miðisko] 'my disk'

distributional analysis
[ð]: intervocalically
[d]: elsewhere

- objective: test the feasibility of the distributional mechanism
 - algorithm: look for complementary distributions of segments

A statistical algorithm

- Problems with basic algorithm
 - not robust to noice (production and/or perception errors)
 - fails to detect optional rules
- Solution: look for near-complementary distributions
 - for each segment, list the contexts in which it appears
 - for each pair of segments, compare the distributions of their contexts, by means of the Kullback-Leibler dissimilarity measure:

$$m_{KL}(s_1, s_2) = \sum_{c} \left(P(c|s_1) \quad \log\left(\frac{P(c|s_1)}{P(c|s_2)}\right) + P(c|s_2) \quad \log\left(\frac{P(c|s_2)}{P(c|s_1)}\right) \right)$$

c: context

A statistical algorithm

- For segment pairs with a KL number above some threshold, determine the default phone
 - the default segment is more frequent and appears in more contexts than the allophone
 - criterion of relative entropy:

$$s_{d} = \min_{s} \left[\sum_{c} P(c|s) \quad \log \frac{P(c|s)}{P(c)} \right]$$

s_d: default segment c: context

Validation on artificial corpora

- 46 phonemes with equal relative frequencies
- 1 phoneme has an allophone in 8 contexts
- utterances composed of random strings

Validation on artificial corpora

- 46 phonemes with equal relative frequencies
- 1 phoneme has an allophone in 8 contexts
- utterances composed of random strings

A statistical + linguistic algorithm

- Problem with statistical algorithm:
 - false alarms due to phonotactics (e.g. French: [\$] only before vowels (*pluie*), [&] only before consonants (*peur*))
- Solution: add a linguistically motivated filter
 - default phone and allophone are phonetically close
 - the context of a rule spreads a phonetic feature onto its targets

A statistical + linguistic algorithm

- Define each segment as a numerical vector encoding five articulatory properties (place, sonority, voicing, nasality, lip rounding)
- Criteria for detecting false alarms
 - there is a segment between default segment and the allophone:

$$\exists s, \forall i \in \{1, ...5\}, v_i(s_a) \le v_i(s) \le v_i(s_d)$$

or $\forall i \in \{1, ...5\}, v_i(s_d) \le v_i(s) \le v_i(s_a)$

- the allophone is more distant from its contexts then the default segment: $\exists i \in \{1, ..5\}, \left| \sum_{s \in C[s_a]} (v_i(s_a) - v_i(s)) \right| > \left| \sum_{s \in C[s_a]} (v_i(s_d) - v_i(s)) \right|$

Test on natural corpus

• CHILDES corpus

- 42.000 short utterances of French parents to their children
- transcribed phonemically
- Implementation of two allophonic rules:
 - palatalisation of /k/ and /g/ before /i,y,,,,,e, \star ,j,/
 - devoicing of /r,1,m,n,�,☆,j/ before /p,t,k,f,s,■/
- Corpus statistics:
 - Total number of segments:

35 default segments + (2+7) allophones = 44

– Total number of segment pairs: 946

0 ≤ Z ≤ 1: hits: 7 misses: 2 /�, \varnothing/, relative frequencies .02 and .01%

number of FA's at Z=1: 129 (=13.6%)

- Allophonic rules can be discovered in the absence of lexical knowledge on the basis of distributional information
- Linguistic knowledge concerning the nature of phonological rules is sufficient to discard false alarms
- Possible extensions
 - rule interaction
 - linguistic filter based on acoustic rather than articulatory distance (cf. Mielke 2005)
- Next step: test if infants are sensitive to complementary distributions and if it matters if the allophonic groupings are natural or not (work in progress with Jim Morgan)

• Test if adults use linguistic knowledge when learning novel phonological rules

Method: artificial language learning paradigm
– natural versus unnatural allophonic rule

• Two artificial languages:

	Language A	Language B	
stops	/ptkbdg/	/ptk/	
fricatives	/fs ∫/	/fs∫vz3/	

• Two artificial languages:

	Language A	Language B	French
stops	/ptkbdg/	/ p t k /	/ptkbdg/
fricatives	/fs∫/	/fs∫vzʒ/	/fs∫vz3/

• Two artificial languages:

	Language A	Language B	French
stops	/ptkbdg/	/ptk/	/ptkbdg/
fricatives	/fs ∫/	/fs∫vzʒ/	/fs∫vzʒ/

• Two natural allophonic rules: Language A: intervocalic *fricative* voicing Language B: intervocalic *stop* voicing

• Determinant + noun phrases:

nel 'two' *ra* 'three' nouns begin with a stop or fricative

Exposure: phrase-picture pairings

Exposure: phrase-picture pairings

Test I: phrase production, known items

Language A:

Language B:

Test II: phrase production, new items

ra bura

Experimental details

- Exposure phase (15 minutes):
 - 8 lexical items
 - 4 stop-initial
 - 4 fricative-initial
 - each item appears in 2 phrases (one with *nel* one with *ra*), repeated 16 times each
- Test phase:
 - 8 old items
 - 32 novel items

Results

Results

• Same segment inventories, different phoneme inventories:

	Language A	Language B
stops	[ptkbdg]	[ptkbdg]
fricatives	[fs∫vzʒ]	[f s ∫ v z ʒ]

• Two unnatural rules: Language A: $/z/ \rightarrow [t], /g/ \rightarrow [f], /p/ \rightarrow [3] / V_V$ Language B: $/v/ \rightarrow [k], /j/ \rightarrow [b], /d/ \rightarrow [s] / V_V$

Results

Results

Summary

• Adults can learn the distinction between phonemic and allophonic contrasts within 15 minutes of exposure to an artificial language, but only if the allophonic groupings are phonetically natural

• Experiments 3 and 4:

 as experiments 1 and 2, but with a perception rather than a production task

Test I: phrase-picture matching, known items

€ nel pemu∫

Test II: phrase-picture matching, new items

🐠 nel pura

Results exp. 3: natural rule

Results exp. 3: natural rule

Results exp. 4: unnatural rule

Results exp. 4: unnatural rule

Discussion

- Effect of phonetic naturalness with a production but not with a perception task
- Two possible explanations
 - task difference: free response in production, forced choice in perception
 - \rightarrow make the perception task harder
 - perception is not constrained by UG, but by a general algebraic learning system (Marcus *et al*, 1999)

 \rightarrow validate the present results with pre-school children and, ultimately, with infants

Conclusion

• Both statistical and linguistic inferences seem necessary to acquire underlying representations

- Further research is necessary to
 - empirically demonstrate the presence of both types of inferences in infants
 - determine the precise nature of the linguistic inferences